请选择 进入手机版 | 继续访问电脑版

BAT大牛亲授 个性化推荐算法实战

26
回复
361
查看
[复制链接]
  • TA的每日心情
    擦汗
    昨天 11:25
  • 签到天数: 280 天

    [LV.8]以坛为家I

    4586

    主题

    5557

    帖子

    75万

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    754034
    发表于 2020-4-23 10:58:13 | 显示全部楼层 |阅读模式
    BAT大牛亲授 个性化推荐算法实战
    课程目录:
    第1章 个性化推荐算法综述
    个性化推荐算法综述部分,主要介绍个性化推荐算法综述,本课程内容大纲以及本课程所需要准备的编程环境与基础知识。

    1-1 个性化推荐算法课程导学 试看
    1-2 个性化推荐算法综述 试看
    1-3 个性化召回算法综述 试看
    第2章 基于邻域的个性化召回算法LFM
    本章节重点介绍一种基于邻域的个性化召回算法,LFM。从LFM算法的理论知识与数学原理进行介绍。并结合公开数据集,代码实战LFM算法。

    2-1 LFM算法综述
    2-2 LFM算法的理论基础与公式推导
    2-3 基础工具函数的代码书写
    2-4 LFM算法训练数据抽取
    2-5 LFM模型训练
    2-6 基于LFM的用户个性化推荐与推荐结果分析
    第3章 基于图的个性化推荐召回算法personal rank
    本章节重点介绍一种基于图的个性化推荐召回算法personal rank。从personal rank算法的理论知识与数学原理进行介绍。并结合公开数据集,代码实战personal rank算法的基础版本与矩阵升级版本。

    3-1 personal rank算法的背景与物理意义
    3-2 personal rank 算法的数学公式推导
    3-3 代码构建用户物品二分图
    3-4 代码实战personal rank算法的基础版本
    3-5 代码实战personal rank算法矩阵版本上
    3-6 代码实战personal rank算法的矩阵版本下 -1
    3-7 代码实战personal rank算法的矩阵版本下-2
    第4章 基于深度学习的个性化召回算法item2vec
    本章节重点介绍一种基于深度学习的个性化召回算法item2vec。从item2vec的背景与物理意义以及算法的主流程进行介绍。并对该算法依赖的模型word2vec数学原理进行浅析。最后结合公开数据集代码实战item2vec算法。

    4-1 item2vec算法的背景与物理意义
    4-2 item2vec依赖模型word2vec之cbow数学原理介绍
    4-3 item2vec依赖模型word2vec之skip gram数学原理介绍
    4-4 代码生成item2vec模型所需训练数据
    4-5 word2vec运行参数介绍与item embedding
    4-6 基于item bedding产出物品相似度矩阵与item2vec推荐流程梳理
    第5章 基于内容的推荐方法content based
    本章节重点介绍一种基于内容的推荐方法content based。从content based算法的背景与主体流程进行介绍。并代码实战content based算法。

    5-1 content based算法理论知识介绍
    5-2 content based算法代码实战之工具函数的书写
    5-3 用户刻画与基于内容推荐的代码实战。
    第6章 个性化召回算法总结与回顾
    本章节重点总结前面几章节介绍过的个性化召回算法。并介绍如何从离线与在线两个大方面评估新增一种个性化召回算法时的收益。

    6-1 个性化召回算法总结与评估方法的介绍。
    第7章 综述学习排序
    综述学习排序的思路,并介绍工业界排序架构以及本课程重点讲解的学习排序模型。

    7-1 学习排序综述
    第8章 浅层排序模型逻辑回归
    本章节重点介绍一种排序模型,逻辑回归模型。从逻辑回归模型的背景知识与数学原理进行介绍。并介绍样本选择与特征选择相关知识。最后结合公开数据集。代码实战训练可用的逻辑回归模型。

    8-1 逻辑回归模型的背景知识介绍
    8-2 逻辑回归模型的数学原理
    8-3 样本选择与特征选择相关知识
    8-4 代码实战LR之样本选择
    8-5 代码实战LR之离散特征处理
    8-6 代码实战LR之连续特征处理
    8-7 LR模型的训练
    8-8 LR模型在测试数据集上表现-上
    8-9 LR模型在测试数据集上表现-下
    8-10 LR模型训练之组合特征介绍
    第9章 浅层排序模型gbdt
    本章节重点介绍排序模型gbdt。分别介绍梯度提升树以及xgboost的数学原理。并介绍gbdt与LR模型的混合模型网络。最合结合公开数据集,代码实战训练gbdt模型以及gbdt与LR混合模型。

    9-1 背景知识介绍之决策树
    9-2 梯度提升树的数学原理与构建流程
    9-3 xgboost数学原理介绍
    9-4 gbdt与LR混合模型网络介绍
    9-5 代码训练gbdt模型
    9-6 gbdt模型最优参数选择
    9-7 代码训练gbdt与LR混合模型
    9-8 模型在测试数据集表现 上
    9-9 模型在测试数据集表现 下
    第10章 基于深度学习的排序模型wide and deep
    本章节重点介绍一种基于深度学习的排序模型wide and deep。从wide and deep的网络结构与数学原理进行介绍。最后结合公开数据集。代码实战wd模型。

    10-1 背景知识介绍之什么是深度学习
    10-2 DNN网络结构与反向传播算法
    10-3 wide and deep网络结构与数学原理介绍
    10-4 .代码实战wd模型之wide侧与deep侧特征构建
    10-5 代码实战wd模型之模型对象的构建
    10-6 wd模型的训练与模型在测试数据集上的表现
    第11章 排序模型总结与回顾
    本章节重点总结前面几章节所讲述的排序模型。并介绍如何在线与离线评估排序模型的表现。

    11-1 学习排序部分总结与回顾
    第12章 本课程回顾与总结
    本章节重点回顾本课程所讲述的所有内容。从个性化推荐算法离线架构与在线架构两个大方面一起总结回顾课程的点滴。

    12-1 个性化推荐算法实战课程总结与回顾

    游客,如果您要查看本帖隐藏内容请回复



    回复

    使用道具 举报

  • TA的每日心情

    5 天前
  • 签到天数: 122 天

    [LV.7]常住居民III

    5

    主题

    203

    帖子

    5575

    积分

    终身会员

    Rank: 6Rank: 6

    积分
    5575
    发表于 2020-4-23 11:42:57 | 显示全部楼层
    BAT大牛亲授 个性化推荐算法实战
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    郁闷
    11 小时前
  • 签到天数: 68 天

    [LV.6]常住居民II

    1

    主题

    181

    帖子

    2228

    积分

    终身会员

    Rank: 6Rank: 6

    积分
    2228
    发表于 2020-4-23 23:14:04 | 显示全部楼层
    BAT大牛亲授 个性化推荐算法实战
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    难过
    2020-9-17 08:14
  • 签到天数: 93 天

    [LV.6]常住居民II

    1

    主题

    183

    帖子

    4583

    积分

    终身会员

    Rank: 6Rank: 6

    积分
    4583
    发表于 2020-4-24 08:42:20 | 显示全部楼层
    谢谢分享!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    回复

    使用道具 举报

  • TA的每日心情
    慵懒
    3 小时前
  • 签到天数: 103 天

    [LV.6]常住居民II

    1

    主题

    135

    帖子

    1万

    积分

    终身会员

    Rank: 6Rank: 6

    积分
    10094
    发表于 2020-4-24 10:08:15 | 显示全部楼层
    BAT大牛亲授 个性化推荐算法实战
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    擦汗
    2020-9-2 10:04
  • 签到天数: 46 天

    [LV.5]常住居民I

    2

    主题

    122

    帖子

    3269

    积分

    终身会员

    Rank: 6Rank: 6

    积分
    3269
    发表于 2020-4-24 11:28:13 | 显示全部楼层
    BAT大牛亲授 个性化推荐算法实战
    回复 支持 反对

    使用道具 举报

  • TA的每日心情

    2020-8-26 11:10
  • 签到天数: 62 天

    [LV.6]常住居民II

    1

    主题

    234

    帖子

    3850

    积分

    终身会员

    Rank: 6Rank: 6

    积分
    3850
    发表于 2020-4-24 13:56:09 | 显示全部楼层
    BAT大牛亲授 个性化推荐算法实战
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    难过
    2020-6-25 10:50
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    1

    主题

    19

    帖子

    2402

    积分

    终身会员

    Rank: 6Rank: 6

    积分
    2402
    发表于 2020-4-24 16:07:47 | 显示全部楼层
    BAT大牛亲授 个性化推荐算法实战
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    难过
    昨天 09:43
  • 签到天数: 309 天

    [LV.8]以坛为家I

    2

    主题

    531

    帖子

    1万

    积分

    终身会员

    Rank: 6Rank: 6

    积分
    10707
    发表于 2020-4-24 19:54:51 | 显示全部楼层
    哈哈哈哈哈哈哈哈哈哈
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    奋斗
    前天 22:27
  • 签到天数: 90 天

    [LV.6]常住居民II

    1

    主题

    215

    帖子

    4509

    积分

    终身会员

    Rank: 6Rank: 6

    积分
    4509
    发表于 2020-4-24 21:54:46 | 显示全部楼层
    666666666666
    回复 支持 反对

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    学习课程!一站搞定!
    学途无忧VIP会员群

    973849140

    周一至周日9:00-23:00

    反馈建议

    169371168@qq.com 在线QQ咨询

    扫描二维码关注我们

    学途无忧!为学习谋坦途,为会员谋福利!|网站地图